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Adaptive coevolutionary networks: a review
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Adaptive networks appear in many biological applications. They combine topological
evolution of the network with dynamics in the network nodes. Recently, the dynamics of
adaptive networks has been investigated in a number of parallel studies from different fields,
ranging from genomics to game theory. Here we review these recent developments and show
that they can be viewed from a unique angle. We demonstrate that all these studies are
characterized by common themes, most prominently: complex dynamics and robust
topological self-organization based on simple local rules.
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1. INTRODUCTION

Complex networks are ubiquitous in nature. They
occur in a large variety of real-world systems ranging
from ecology and epidemiology to neuroscience, socio-
economics and computer science (Albert & Barabasi
2002; Dorogovtsev & Mendes 2003; Newman 2003;
Newman et al. 2006). While physics has for a long time
been concerned with well-mixed systems, lattices and
spatially explicit models, the investigation of complex
networks has in recent years received a rapidly
increasing amount of attention. In particular, the
need to protect or optimize natural networks as well
as the goal to create robust and efficient technical nets,
prove to be strong incentives for research.

A network consists of a number of network nodes
connected by links (see also box 1). The specific pattern
of connections defines the network’s topology. For many
applications it is not necessary to capture the topology
of a given real-world network exactly in a model.
Rather, in many cases the processes of interest depend
only on certain topological properties (Costa et al.
2007). The majority of recent studies revolve around
two key questions corresponding to two distinct lines of
research: what are the values of important topological
properties of a network that is evolving in time? And,
how does the functioning of the network depend on
these properties?

The first line of research is concerned with the
dynamics of networks. Here, the topology of the
network itself is regarded as a dynamical system. It
changes in time according to specific, often local, rules.
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Investigations in this area have revealed that certain
evolution rules give rise to peculiar network topologies
with special properties. Notable examples include the
formation of small world (Watts & Strogatz 1998)
and scale-free networks (Price 1965; Barabàsi &
Albert 1999).

The second major line of network research focuses on
the dynamics on networks. Here, each node of the
network represents a dynamical system. The individual
systems are coupled according to the network topology.
Thus, the topology of the network remains static while
the states of the nodes change dynamically. Important
processes that are studied within this framework
include synchronization of the individual dynamical
systems (Barahona & Pecora 2002) and contact
processes such as opinion formation and epidemic
spreading (Kuperman & Abramson 2001; Pastor-
Satorras & Vespignani 2001; May & Lloyd 2001;
Newman 2002; Boguñá et al. 2003). These studies
have made it clear that certain topological properties
have a strong impact on the dynamics. For instance, it
was shown that vaccination of a fraction of the nodes
cannot stop epidemics on a scale-free network (May &
Lloyd 2001; Pastor-Satorras & Vespignani 2001).

Until recently, the two lines of network research were
pursued almost independently in the physical literature.
While there was certainly a strong interaction and cross-
fertilization, a given model would either describe the
dynamics of a certain network or the dynamics on a
certain network. Nevertheless, it is clear that in most
real-world networks the evolution of the topology is
invariably linked to the state of the network and vice
versa. For instance, consider a road network. The
topology of the network, that is the pattern of roads,
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Figure 1. In an adaptive network, the evolution of the
topology depends on the dynamics of the nodes. Thus, a
feedback loop is created in which a dynamical exchange of
information is possible.

Box 1. A brief network glossary.

Degree. The degree of a node is the number of nearest neighbours to which a node is connected. The mean degree of the
network is the mean of the individual degrees of all nodes in the network.

Dynamics. Depending on the context, the term dynamics is used in the literature to refer to a temporal change of either
the state or the topology of a network. In this paper, we use the term dynamics exclusively to describe a change in the state,
while the term evolution is used to describe a change in the topology.

Evolution. Depending on the context the term evolution is used in the literature to refer to a temporal change of either
the state or the topology of a network. In this paper, we use the term evolution exclusively to describe a change in the
topology, while the term dynamics is used to describe a change in the state.

Frozen nodes. A node is said to be frozen if its state does not change over in the long-term behaviour of the network. In
certain systems discussed here, the state of frozen nodes can change nevertheless on an even longer (topological) time scale.

Link. A link is a connection between two nodes in the networks. Links are also sometimes called edges or simply network
connections.

Neighbours. Two nodes are said to be neighbours if they are connected by a link.
Node. The node is the principal unit of the network. A network consists of a number of nodes connected by links. Nodes

are sometimes also called vertices.
Scale-free network. In scale-free networks, the distribution of node degrees follows a power law.
State of the network. Depending on the context, the state of a network is used either to describe the state of the network

nodes or the state of the whole network including the nodes and the topology. In this review, we use the term state to refer
exclusively to the collective state of the nodes. Thus, the state is a priori independent of the network topology.

Topology of the network. The topology of a network defines a specific pattern of connections between the network nodes.
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influences the dynamic state, e.g. the flow and density of
traffic. But if traffic congestions are common on a given
road, it is probable that new roads will be built in order
to decrease the load on the congested one. In this way a
feedback loop between the state and topology of the
network is formed. This feedback loop can give rise to a
complicated mutual interaction between a time varying
network topology and the nodes’ dynamics. Networks
which exhibit such a feedback loop are called coevolu-
tionary or adaptive networks (figure 1).

Based on the successes of the two lines of research
mentioned earlier, it is the next logical step to bring
these strands back together and to investigate the
dynamics of adaptive networks. Indeed, a number of
papers on the dynamics of adaptive networks have
recently appeared. Since adaptive networks occur over
a large variety of scientific disciplines, they are
currently investigated from many different directions.
While the present studies can only be considered as a
first step towards a theory of adaptive networks, they
already crystallize certain general insights. Despite the
thematic diversification, the reported results,
considered together, show that certain dynamical
phenomena repeatedly appear in adaptive networks:
the formation of complex topologies; robust dynamical
self-organization; spontaneous emergence of different
classes of nodes from an initially inhomogeneous
population; and complex mutual dynamics in state
and topology. In §3–6, we argue that the mechanisms
that give rise to these phenomena arise from the
dynamical interplay between state and topology.
They are therefore genuine adaptive network effects
that cannot be observed in non-adaptive networks.

In this review, it is our aim to point out that many
recent findings reported mainly in the physical literature
describe generic dynamical properties of adaptive net-
works. These findings are, therefore, of potential import-
ance in many fields of research. In particular we aim to
make recent insights accessible to researchers in the
biological sciences, where adaptive networks frequently
appear and have been studied implicitly for a long time.
J. R. Soc. Interface (2008)
We start in §2 by discussing several examples that
illustrate the abundance of adaptive networks in the
real world and in applied models. Thereafter we
proceed to the core of the review. In §3 adaptive
Boolean networks are studied to explain how adaptive
networks can self-organize towards dynamical critical-
ity. Other less obvious, but no less intriguing forms of
the self-organization are discussed in §4, while we
review investigations of adaptive coupled map lattices.
In particular, it is shown that a spontaneous ‘division of
labour’ can be observed in which the nodes differentiate
into separate classes, which play distinct functional
roles in the network. Further examples of this
functional differentiation of nodes are discussed in §5,
which focuses on games on adaptive networks. Finally,
in §6 we discuss the dynamics of the spreading of
opinions and diseases on social networks, which shows
that the adaptive networks can exhibit complex
dynamics and can give rise to new phase transitions.
We conclude this review in §7 with a summary,
synthesis and outlook.
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2. UBIQUITY OF ADAPTIVE NETWORKS
ACROSS DISCIPLINES

Adaptive networks arise naturally in many different
applications. Although studies that target the interplay
between network state and topology have only recently
begun to appear, models containing adaptive networks
have a long tradition in several scientific disciplines. In
§1, we have already mentioned the example of a road
network that can be considered as a prototypical
adaptive network. Certainly, the same holds for many
other technical distribution networks such as power
grids (Scirè et al. 2005), the mail network, the internet
or wireless communication networks (Glauche et al.
2004; Krause et al. 2005; Lim et al. 2007). In all these
systems a high load on a given component can cause
component failures, e.g. traffic jams or electrical line
failures, with the potential to cut links or remove nodes
from the network. On a longer time scale, high load will
be an incentive for the installation of additional
connections to relieve this load. Further, in the
engineering literature, games on adaptive networks,
called network creation games, have recently become a
hot topic. These are currently investigated in the
context of evolutionary engineering (Scholz & Greiner
2007 and references therein).

Essentially the same mechanisms are known to arise
in natural and biological distribution networks. For
example, consider the vascular system. While the
topology in the network of blood vessels directly
controls the dynamics of blood flow, the blood flow
also exhibits a dynamic feedback on the topology. One
such process is arteriogenesis, where new arteries are
formed to prevent a dangerous restriction in blood
supply (ischemia) in neighbouring tissues (Schaper &
Scholz 2003).

More examples of adaptive networks are found in
information networks like neural or genetic networks.
In the training of an artificial neuronal network, for
example, it is obvious that the strength of connections
and therefore the topology has to be modified depend-
ing on the state of the nodes. The changed topology
then determines the dynamics of the state in the next
trial. Also in biological neural and genetic networks
some evidence suggests that the evolution of the
topology depends on the dynamics of the nodes
(Hopfield et al. 1983). An even more extreme example
are immune networks, which have to restructure
themselves in reaction to pathogens.

In the social sciences networks of relationships
between individuals or groups of individuals have been
studied for decades. On the one hand, important
processes like the spreading of rumours, opinions and
ideas take place on social networks and are influenced by
the topological properties.On the other hand it is obvious
that, say, political opinions or religious beliefs can in turn
have an impact on the topology, when for instance
conflicting views lead to the break-up of social contacts.

In game theory there is a long tradition to study the
evolution of cooperation in simple agent-based models.
In recent years spatial games that are played on social
networks have become very popular. While most
studies in this area so far focus on static networks,
J. R. Soc. Interface (2008)
one can easily imagine that the willingness of an agent
to cooperate has an impact on his social contacts.
To our knowledge the huge potential of games on
adaptive networks was first pointed out by Skyrms &
Pemantle (2000).

Further examples of adaptive networks are found in
chemistry and biology. A model of an adaptive
chemical network is studied by Jain & Krishna (2001)
and Seufert & Schweitzer (2007). In the model the
nodes of the networks are chemicals which interact
through catalytic reactions. Once the population
dynamics has reached an attractor the species with
the lowest concentration is replaced by a new species
with randomly generated interactions. Although the
topology of the evolving network is not studied in great
detail, the papers show that the appearance of a
topological feature, an autocatalytic loop, has a strong
impact on the dynamics of both state and topology of
the network.

While Jain & Krishna focus on the evolution of
chemical species, their work is clearly inspired by
models of biological evolution. In ecological research,
models involving adaptive networks have a long
tradition. A prominent area in which adaptive net-
works appear is food web evolution (Dieckmann &
Doebeli 1999; Drossel et al. 2001; Dieckmann et al.
2004). Food webs describe communities of different
populations that interact by predation. In almost all
models the abundance of a species, i.e. the dynamic
state, depends on the available prey as well as on the
predation pressure, both of which depend, in turn, on
topology of the network. If the population size drops
below a certain threshold then the corresponding
population goes extinct and the node is removed from
the network. Therefore the dynamics of the topology
depends on the state of the network.

The examples discussed above show that adaptive
networks appear in a large variety of different contexts.
However, the nature and dynamics of the adaptive
feedback as such has to date only been investigated in a
relatively small number of studies. In §§3–6, we focus
on papers that specifically investigate the adaptive
interplay of state and topology and illustrate the
implications this interplay can have.

A prominent ancestor of adaptive network models
was proposed by Christensen et al. (1998). In this work,
a variant of the famous Bak–Sneppen model of
macroevolution (Bak & Sneppen 1993) is discussed.
The model describes the evolution of a number of
populations, represented as nodes of a network in which
the (undirected) links correspond to abstract ecological
interactions. The state of each node is a scalar variable
that denotes the population’s evolutionary fitness.
Initially this fitness is assigned randomly. Thereafter,
the model is updated successively by replacing the
population with the lowest fitness by a new species with
random fitness. The replacement of a species is assumed
to affect also the fitness of the other populations it is
interacting with. Therefore, the fitness of all neighbour-
ing species (i.e. species with direct links to the replaced
one) is also set to random values. In the original
model of Bak & Sneppen, the underlying network is a
one-dimensional chain with periodic boundary
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Figure 2. For different initial conditions, the connectivity
hzilargest of the largest connected cluster, of the adaptive
Boolean network studied by Christensen et al. self-organizes
towards the critical value of 2. Adapted from Christensen
et al. (1998), fig. 3 (open circle, !zOZ2, pZ10K2; solid
circle, !zOZ2, pZ10K3; open square, !zOZ3, pZ10K2;
solid square, !zOZ3, pZ10K3).
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conditions, so that every node has exactly two
neighbouring nodes. In other words, the degree of
each node is two. It is well known that this model gives
rise to avalanches of species replacements which follow
a scale-free size distribution (Bak & Sneppen 1993).

In Christensen et al. (1998), the simple topology of
the Bak–Sneppen model is replaced by a random graph.
The paper focuses mainly on the evolutionary dynamics
on networks with static topology. However, in the
second to last paragraph a model variant is studied in
which the replacement of a population can affect the
local topology. If the replaced population had a lower
degree than the species in the neighbourhood, there is a
small probability that a new link is added that connects
to the replaced species. But if the replaced population
had a higher degree than the species in the neighbour-
hood then one link that connects to the replaced species
is removed with the same probability. This evolution
rule effectively changes the mean degree, i.e. the
average number of links connecting to a node. By
numerical simulation, Christensen et al. find that the
mean degree in the largest cluster of nodes approaches 2
(figure 2)—exactly the same mean degree as the linear
chain used in the original Bak–Sneppen model. This
finding is remarkable since it suggests that adaptive
networks are capable of robust self-organization of their
topology based on local rules. This observation
triggered a number of subsequent studies which will
be discussed in §3.
3. ROBUST SELF-ORGANIZATION IN BOOLEAN
NETWORKS

In order to understand the functioning of adaptive
networks it is reasonable to focus on conceptually
simple models. In Boolean networks the state of a given
node is characterized by a single Boolean variable.
Boolean networks with an underlying variable
J. R. Soc. Interface (2008)
topology, offer a particularly simple and well-studied
framework for the study of dynamical phenomena. Two
prominent applications of Boolean networks are neural
and gene regulatory nets, in which the state of a given
node indicates whether a certain gene is being
transcribed or whether a certain neuron is firing.

It is known that Boolean networks are capable of
different types of dynamical behaviour, including
chaotic and stationary (frozen) dynamics (Socolar &
Kauffman 2003). At the boundary between stationarity
and chaos, often lies a narrow transition region, where
oscillatory dynamics can be observed and the density of
frozen nodes exhibits power-law scaling. According to
biological reasoning, neural as well as gene regulatory
networks have to be close to or on this ‘edge of chaos’ to
function properly (e.g. to code for different distinct cell
types or allow meaningful information processing). A
central question is how the networks manage to stay in
this narrow parameter region while undergoing topo-
logical changes in the course of biological evolution and
individual development. As we will show in the
following it is probable that the adaptive nature of
these networks plays a central role in the self-
organization towards the critical oscillatory or quasi-
periodic states.

Perhaps the simplest models for regulatory and
neural nets are threshold networks. In these networks,
the state of the Boolean variable indicates whether the
corresponding node is active or inactive. Depending on
the topology, active nodes may exert a promoting or an
inhibiting influence on their direct neighbours in the
network. If the inputs received by a node exceed a
certain threshold, say if a node receives more promoting
than inhibiting signals via its links, the node becomes
active; otherwise it is inactive.

In order to study topological self-organization,
Bornholdt & Rohlf (2000) used a Boolean threshold
network in conjunction with an update rule for the
topology: the time evolution of the system is simulated
until a dynamical attractor, say a limit cycle, has been
reached. Then a randomly chosen node is monitored for
one period of the attractor or, in the case of chaotic
dynamics, for a long fixed time. If the state of the node
changes at least once during this time it loses a random
link. However, if the state remains unchanged for the
whole duration, a link from a randomly selected node is
created. In short, ‘frozen’ nodes grow links, while
‘dynamical’ nodes lose links.

Note that adding links randomly can lead to the
formation of, apparently non-local, long distance
connections. However, since the targets of the links
are randomly determined no distributed information is
used. In this sense, topological evolution rules that add
or remove random links can be considered as local rules.

By numerical simulation Bornholdt & Rohlf show
that, independent of the initial state, a certain level of
connectivity is approached. If the number of nodes N is
changed, the emerging connectivity K follows the
power law KZ2C12:4NK0:47. Therefore, in the case
of large networks (N/N), self-organization towards
the critical connectivity KcZ2 can be observed. This is
explained by further simulations which show that in
large networks, a topological phase transition takes
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place at KZ2. In this transition the fraction of frozen
nodes drops from 1 to 0: before the transition all nodes
change their state in one period of the attractor, while
above the transition almost no node changes its state at
all. This means that, in a large network, the proposed
rewiring algorithm almost always adds links if K!2,
but almost always removes links if KO2. In this way
self-organization towards the dynamically critical state
takes place. This form of self-organization is highly
robust as it does not depend sensitively on the initial
topology or the choice of parameters.

As pointed out by Bornholdt & Rohlf (2000), and
later in a different context by Bornholdt & Röhl (2003),
these results illustrate an important principle:
dynamics on a network can make information about
global topological properties locally accessible. In an
adaptive network this information can feed back into
the local dynamics of the topology. Therefore, the
adaptive interplay between the network state and
topology can give rise to a highly robust global self-
organization based on simple local rules. Note that this
genuine adaptive network effect can be observed in
networks where topological evolution and dynamics of
the states take place on separate time scales, as shown
in the example presented by Bornholdt & Rohlf. These
results inspired several subsequent investigations
that extended the results (Bornholdt & Sneppen 1998,
2000; Luque et al. 2001; Kamp & Bornholdt 2002;
Bornholdt&Röhl 2003; Liu&Bassler 2006;Rohlf 2007).

A natural generalization of the system of Bornholdt &
Rohlf is to replace the threshold function by more
general Boolean functions. In the Kauffman networks
studied by Bornholdt & Sneppen (1998), Luque et al.
(2001) and Liu & Bassler (2006), random Boolean
functions are used, which are represented by randomly
created lookup tables. Luque et al. (2001) create these
lookup tables with a bias p so that a random input leads
to activation with probability p and deactivation with
probability 1Kp. In this way, networks are created in
which the critical connectivity can be tuned by
changing p. Although a different rewiring rule is used,
only allowing for disconnection, self-organization of
the system towards the critical state (from above) is
still observed.

The work described above shows that already very
simple adaptive networks can exhibit complex
dynamics. In order to find further examples of sets of
interesting rules, an exhaustive search over a large class
of adaptive network models is desirable. Indeed, first
attempts in this direction for Boolean networks have
been reported by Sayama (2007). In particular, a
numbering scheme is proposed that allows us to
enumerate all adaptive networks in a given class. A
similar formal, cellular-automaton-inspired approach is
also developed by Smith et al. (2007).

Finally, let us remark that beside the mechanism
described by Bornholdt and others there exists an
alternative mechanism for making information on the
global state locally available, which again can be used
to robustly self-organize the system. This ‘dual’
mechanism applies if the topology of the network
changes much faster than the state. For illustration
consider the following toy model: in a given network
J. R. Soc. Interface (2008)
links are established randomly, but links between nodes
of different states are instantaneously broken. These
rules lead to a configuration in which every node of a
given state is connected to all other nodes in the same
state. This means that if a given node has, say, five links
there are exactly five other nodes in the network that
have the same state. Global information on the states
has become locally available through the topology. This
information can now feed back into the dynamics of the
states on a slower time scale.
4. LEADERSHIP IN COUPLED OSCILLATOR
NETWORKS

In §3, we have discussed the adaptive interplay between
state and topology as a dynamical feedback that can
drive systems towards criticality. A similar feedback
loop can, in a slightly different setting, guide the self-
organization towards non-trivial topologies. One
possible outcome is a spontaneous division of labour:
the emergence of distinct classes of nodes from an
initially homogeneous population. This phenomenon
was first described by Ito & Kaneko (2002, 2003) in an
adaptive network of coupled oscillators. It is remark-
able that these authors state with great clarity, that
their work was motivated by the new dynamical
phenomena that can be expected in adaptive networks.

Ito & Kaneko study a directed network, in which
each node represents a chaotic oscillator. The state of
an oscillator is characterized by a continuous variable.
Furthermore, every link in the network has an
associated continuous variable that describes its weight,
i.e. the strength of the connection. The states of the
nodes and the weights of the links are updated in
discrete time steps. In these updates, the new state of a
given node is determined according to a logistic map
(May 1976) which is coupled to the neighbouring
oscillators via the network connections. The weights
follow an update rule which increases the coupling
between oscillators in similar states, while keeping
the total weights of all inputs to each single oscillator
constant.

The use of weighted networks is a convenient choice
for the analysis of structural changes in adaptive
networks. For example, they can be initialized with
uniform weights and states plus minor fluctuations.
Effectively that means that all oscillators are initially in
almost identical states and are connected to all other
oscillators with equal strength. In other words, initially
the nodes form a homogeneous population. However,
over the course of the simulation the weight of a large
fraction of links approaches 0, so that a distinct
network structure emerges. This structure can be
visualized (and analysed) by only considering links
above a certain weight and neglecting all others. In the
model of Ito & Kaneko this network does not approach
a frozen configuration, but remains evolving as links
keep appearing and disappearing by gaining or
losing weight.

Ito & Kaneko show that in a certain parameter
region two distinct classes of nodes form that differ by
their effective outgoing degree. Even a network in
which some nodes are of high degree while other nodes
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are of low degree could still be considered to be
homogeneous on average if every node has a high
degree at certain times and a low outgoing degree at
others. However, in the model of Ito & Kaneko this is
not the case: despite the ongoing rewiring of individual
links, a node that has a high/low outgoing degree at
some point in time will generally have a high/low
outgoing degree also later in time. Note that the
outgoing degree indicates the impact that a given node
has on the dynamics of others in the network. In this
sense one could describe the findings of Ito & Kaneko as
the emergence of a class of ‘leaders’ and a class of
‘followers’—or, to use a more neutral metaphor, of a
spontaneous division of labour in which the nodes
differentiate to assume distinct functional roles.

A similar division of labour was subsequently
observed in a number of related systems which can be
interpreted as simple models of neural networks
(Bornholdt & Rohlf 2000; Gong & van Leeuwen 2004;
van den Berg & van Leeuwen 2004). As a common
theme, in all these models the topological change arises
through a strengthening of connections between
elements in a similar state—a rule that is for
neural networks well motivated by empirical results
(Paulsen & Sejnowski 2000). Even in systems in which
no distinct classes of nodes emerge, the strengthening of
connections between similar nodes often leads to strong
heterogeneity in degree. A notable example is the
formation of a scale-free topology reported by Fan &
Chen (2004) and Fronczak et al. (2006).

From a technical point of view, the emergence of
strong heterogeneity in degree is not always desirable.
For instance, it is known that homogeneous networks,
consisting of nodes with a similar degree, are easier to
synchronize (Donetti et al. 2005). In an interesting
paper, Zhou & Kurths (2006) study an adaptive
J. R. Soc. Interface (2008)
network of coupled chaotic oscillators in which the
connections between different nodes are strengthened.
Note that this is exactly the opposite of the adaptation
rule proposed by Ito & Kaneko. Consequently, the
adaptive self-organization drives the network into the
direction of a more homogeneous topology, ongoing
with an enhanced ability for synchronization. Thereby,
it is possible to synchronize networks that exceed by
several orders of magnitude the size of the largest
comparable random graph that is still synchronizable.

Another hallmark of adaptive networks that
reappears in the work of Zhou & Kurths is the
emergence of power laws. They show that in the
synchronized state, the incoming connection weights
Vi scale with the degree k of the corresponding node xi
as V(k)wkKq, where qZK0.48 is independent of the
parameters in the model (figure 3). The authors point
out that this universal behaviour arises owing to a
hierarchical transition to synchronization. In this
transition the nodes of the highest degree are synchro-
nized first. Nodes of lower degree are synchronized later
and therefore experience the increase in coupling
strength for a longer time.

Let us remark that the results reported in this section
indicate that there could be a subtle connection to the
mechanism described by Bornholdt & Rohlf (2000): the
results of Ito & Kaneko show that there is a scale
separation between the dynamics of the network
(involving states and topology) and the time scale on
which the emergent properties of the nodes change. In
other words the turnover time for a node of high degree
to become a node of low degree is many orders of
magnitude larger than the time required for the rewiring
of individual links. In contrast to other models, this
time-scale separation is not evident in the rules of the
system but emerges from the dynamics. One can suspect
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that the time-scale separation could arise owing to the
presence of a phase transition at which the turnover
time diverges. In the light of the findings described in §3,
it is conceivable that an adaptive network could self-
organize towards such a phase transition. However,
more investigations in this direction are certainly
necessary to verify that this is indeed the case.
5. COOPERATION IN GAMES ON ADAPTIVE
NETWORKS

The term ‘division of labour’ used in §4 already
suggests a socio-economic reading. Indeed, socio-
economic models are perhaps the most fascinating
application of adaptive networks so far. In this context,
the nodes represent agents (individuals, companies,
nations, etc.) while the links represent social contacts
or, say, business relations. In contrast to other systems
considered so far, agents are in general capable of
introspection and planning. For this reason, the
exploration of socio-economic systems is invariably
linked to game theory.

One of the central questions in game theory is how
cooperation arises in populations despite the fact that
cooperative behaviour is often costly to the individual.
A paradigmatic game which describes advantageous
but costly cooperation is the Prisoner’s Dilemma. In
this game two players simultaneously choose between
cooperation and defection. From the perspective of a
single player choosing to defect always yields a higher
pay-off regardless of the action of the opponent.
However, the collective pay-off received by both players
is the lowest if both players defect and the highest if
both cooperate.

In models, the action a player takes is determined by
its strategy, which comprises a lookup table that maps
the information from a given number of previous steps
to an action, as well as rules for the initial rounds where
no such information is available. By updating the
strategies of players according to a set of evolutionary
rules, the evolution of cooperation can be studied.

Spatial games in which the players are arranged on a
static network with links that represent possible games
have been studied for some time (e.g. Novak & May
1992). More recently games on adaptive networks have
come into focus. In these games the players can improve
their topological position, for example by cutting links
to defectors. The Prisoner’s Dilemma game on adaptive
networks has been studied by Ebel & Bornholdt (2002),
Zimmermann et al. (2004), Eguı́luz et al. (2005),
Zimmermann & Eguı́luz (2005) and Pacheco et al.
(2006). An adaptive version of the closely related
Snowdrift game was investigated by Ren et al. (2006)
and a more realistic socio-economic model involving
taxes and subsidies was discussed by Lugo & Jiménez
(2006). In the results presented in these papers, the two
common themes discussed above, namely the robust
topological self-organization and the associated appear-
ance of power laws, reappear and have been noted by
many authors. For instance the formation of scale-free
topologies, which exhibit a power-law degree distri-
bution, is discussed in detail by Eguı́luz et al. (2005)
and Ren et al. (2006).
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An effect that is reminiscent of the spontaneous
division of labour and the emergence of social hier-
archies was observed by Zimmermann et al. (2004),
Eguı́luz et al. (2005) and Zimmermann & Eguı́luz
(2005). However, in these papers, the adaptive inter-
play between the network state and topology stops at
some point as the network freezes in a final configu-
ration, a so-called network Nash equilibrium. It is
therefore not clear whether the different social classes
observed in the simulations arise owing to the same
mechanism as in the model of Ito & Kaneko. As another
possible explanation, the network could have reached
an absorbing state, freezing the network and thus fixing
local topological heterogeneities in some otherwise
transient state.

An observation reported by Ebel & Bornholdt (2002)
as well as Eguı́luz et al. (2005) and Zimmermann &
Eguı́luz (2005) is that the approach to the final state is
marked by large avalanches of strategy changes which
exhibit power-law scaling. Such scaling behaviour is
another indicator of self-organized critical behaviour.

From an applied perspective, it is interesting that
elevated levels of cooperation are reported in all papers
cited above. The mechanism that promotes cooperation
in adaptive networks becomes apparent when one
considers the interaction between the players and
their neighbourhood. In all games on networks the
local neighbourhood acts as an infrastructure or
substrate from which pay-offs are extracted. The
quality of this infrastructure depends on topological
properties such as the degree or the number of
cooperators in the neighbourhood. In an adaptive
network a player can shape this neighbourhood by its
own actions. Thereby, the neighbourhood becomes an
important resource. The rules of the games are
generally such that selfish behaviour degrades the
quality of this resource as neighbours cut or rewire
their links. This feedback may be regarded as a
‘topological punishment’ of the defecting player.

A rigorous investigation in the mechanism that
promotes cooperation on adaptive networks is pre-
sented by Pacheco et al. (2006). In the limit in which
topological dynamics is much faster than the evolution
of strategies the authors show that the Prisoner’s
Dilemma on an adaptive network can be mapped to a
game in a well-mixed population. However, this
‘renormalized’ game is not a Prisoner’s Dilemma; the
mapping effectively changes the rules of the game so
that the Prisoner’s Dilemma is transformed into a
coordination game. This explains the elevated levels of
cooperation since the cooperative behaviour is natu-
rally favoured in the coordination game.

It is interesting to note that the adaptive nature of a
network is not always apparent on the first glance. For
instance, Paczuski et al. (2000) study the minority game
on a fixed network. In this non-cooperative game, each
agent makes a decision between two alternatives. The
agents who decide for the alternative chosen by the
minorityof agentsare rewarded.Thedecisionof the agent
depends on its own decision in the previous round as well
as on the decision of its immediate neighbours in the
networkduring that round.As in thePrisoner’sDilemma,
the strategy of an individual agent can be described by



Figure 4. In the paper of Holme & Ghoshal, agents compete
for a position of high centrality and low degree. This figure
shows that complex global topologies are formed. In the figure
three classes of nodes can be identified. Most nodes suffer a
low centrality, while others gain high centrality at the cost of
having to maintain a large number of links. Only a small class
of ‘VIP’ nodes manage to achieve both high centrality and low
degree. Adapted from Holme & Ghoshal (2006), fig. 2b.
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a lookup table that is allowed to evolve in time to
maximize success. Despite the fact that the game is
seemingly played on a static network, Paczuski et al.
observedall thehallmarks ofadaptivenetworksdescribed
above, including the emergence of two distinct groups
which differ in their success in the game. This enigma is
resolved by noting that the evolution of the strategies in
the lookup tables can effectively change the nature of the
links in the network. In particular the lookup tables can
evolve to such a state that the decision of certain
neighbours in the network is ignored entirely (M.
Paczuski 2007, personal communication). This means
that even though the network itself is static, the effective
degree, which is experienced by the nodes, can change
over time. Therefore the network is after all adaptive.

While adaptive networks can add realism to pre-
viously studied games like the Prisoner’s Dilemma, they
also give rise to a new class of games. In these games the
players do not try to maximize an abstract pay-off, but
struggle to achieve an advantageous position on the
network. For example, in a social network a position of
high centrality is certainly desirable. The struggle for
such a position is studied in models by Rosvall &
Sneppen (2006a,b, 2007). The model describes the
formation of a communication network between social
agents. As an interesting feature of this model the
communication provides the agents with meta infor-
mation about the network structure.

In a related study by Holme & Ghoshal (2006) the
agents attempt to achieve a position of high centrality
while minimizing the number of contacts they have to
maintain.

Holme&Ghoshal show in simulations that the system
exhibits long periods of stability where one strategy is
dominant.These are interruptedby sudden invasions of a
different strategy. Apparently, no steady state is
approached so that the successional replacement of the
dominant strategy continues in the long-term behaviour.
An interesting feature of the model is that it transiently
gives rise to highly non-trivial topologies. Figure 4 shows
an example of such a topology. The topology shown is
complex in the sense that it is immediately evident that it
is not random or regular, but possesses a distinct
structure. Note that three distinct classes of nodes can
be recognized in the figure. In particular, there is a class of
agents who achieve the goal of being in a position of high
centrality and low degree. However, while a spontaneous
division of labour is evident, there is no de-mixing of
classes: a node holding a position of low degree and high
centrality at a certain time does not have an increased
probability of holding such a position at a later time. Also
note that the node’s centrality that enters into the model
is a global property. Therefore the emerging topologies
are not organized based on local information alone.
6. DYNAMICS AND PHASE TRANSITIONS IN
OPINION FORMATION AND EPIDEMICS

Above we have mainly been concerned with systems in
which the state of the network changes much faster or
much slower than the evolution of the topology. In
systems that exhibit such a time-scale separation only,
the averaged state of the fast variables can affect the
J. R. Soc. Interface (2008)
dynamics of the slow variables and, therefore, the
dynamical interplay between the time scales will, in
general, be relativelyweak. In contrast, newpossibilities
openup in systems inwhich the evolution of the topology
takes place on the same time scale as the dynamics on the
network. As dynamical variables and topological
degrees of freedom are directly interacting, a strong
dynamical interplay between the state and topology
becomes possible.Onemight say that information on the
dynamics of the state can be stored in and read from the
topology and vice versa. In the study of this interplay we
can no longer make use of the time-scale separation.
Nevertheless it is still possible to analyse andunderstand
the dynamics by using the tools of nonlinear dynamics
and statistical physics. Depending on the language of
description, the qualitative transitions in the dynamics
and topology become apparent in the form of either
bifurcations or phase transitions.

A simple framework in which the dynamical inter-
play can be studied is offered by contact processes,
which describe the transmission of some property, e.g.
information, political opinion, religious belief or epi-
demic infection along the network connections. One of
the simplest models in this class is the epidemiological
SIS model. This model describes a population of
individuals forming a social network. Each individual
is either susceptible (S) to the disease under consider-
ation or infected (I). A susceptible individual in contact
with an infected individual becomes infected with a
fixed probability p per unit time. Infected individuals
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of nodes emerge that have distinct density distributions.
These correspond to susceptibles (open circles) and infected
(filled circles) and have low and high degree k, respectively.
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recover at a rate r immediately becoming susceptible
again. If considered on a static network, the SIS model
has at most one dynamical transition. Below the
transition, only the disease-free state is stable, while
above the transition the disease can invade the network
and approaches an endemic state.

The spatial SIS model can be turned into an adaptive
network if an additional process is taken into account:
susceptible individuals can try to avoid contact with
the infected. Such a scenario was studied by Gross et al.
(2006). In their model, with probability w, a given
susceptible individual breaks the link to an infected
neighbour and forms a new link to another susceptible.
This additional rule turns the SIS model into an
adaptive network. As shown by Gross et al. (2006),
even moderate rewiring probabilities change the
dynamics of the system qualitatively. Sudden discon-
tinuous transitions appear and a region of bistability
emerges in which both the disease-free state and the
epidemic state are stable (figure 5). Similar findings are
also reported by Ehrhardt et al. (2006) who investigate
the spreading of innovation and similar phenomena on
an adaptive network.

At high rewiring rates, the adaptive SIS model of
Gross et al. (2006) can approach an oscillatory state in
which the prevalence of the epidemic changes period-
ically. The oscillations are driven by two antagonistic
effects of rewiring. On the one hand rewiring isolates the
infected and thereby reduces the prevalence of the
disease. On the other hand the rewiring leads to an
accumulation of links between susceptibles and thereby
forms a tightly connected cluster. At first the isolating
effect dominates and the density of infected decreases.
However, as the cluster of susceptibles becomes larger
and tighter connected, a threshold is crossed at which
the epidemic can spread through the cluster. This leads
to a collapse of the susceptible cluster and an increased
prevalence which completes the cycle. While this cycle
exists only in a narrow region (figure 5) in the model
described above, the parameter region in which the
J. R. Soc. Interface (2008)
oscillations occur and the amplitude of the oscillations
are enlarged if one takes into account that the rewiring
rate can depend on the awareness of the population and
therefore on the prevalence of the epidemic (Gross &
Kevrekidis 2007).

In the adaptive SIS model the hallmarks of adaptive
networks discussed above reappear; the isolation of
infected and the emergence of a single tightly connected
cluster of susceptibles is an example of the appearance
of global structure from local rules. Moreover, the
mechanism that drives the oscillations is reminiscent of
the self-organization to criticality discussed in §3.

The rewiring rule that is used in the adaptive SIS
model establishes connections between nodes in iden-
tical states and severs connections between different
states. Stated in this way the rewiring rule reminds one
of the model of Ito & Kaneko (see §4) in which
connections between similar nodes are strengthened
and others weakened. This analogy suggests that
topologically different classes of nodes could emerge
from the dynamics of the network. Indeed, figure 6
shows that two classes of nodes appear which are
characterized by different degree distributions. In this
case, we can identify the classes to consist of infected
and susceptible nodes, respectively.

In order to study the dynamics of the adaptive SIS
model, Gross et al. (2006) and subsequently also
Zanette (2007) apply a moment closure approximation.
By means of this approximation, a low-dimensional
system of ordinary differential equations can be derived
that captures the dynamics of the network. The system
of equations can then be studied with the tools of
bifurcation theory (Kuznetsov 1989; Guckenheimer &
Holmes 2000) which reveal the critical points in
parameter space where qualitative transitions in the
dynamics occur. In order to capture the dynamics of the
adaptive SIS model, three dynamical variables are
necessary, while the system-level dynamics of the
standard (non-adaptive) SIS model can be captured
by only one variable. This shows that in the adaptive
model, two topological degrees of freedom communicate
with the dynamics of the nodes.

Another approach to the dynamics of adaptive
networks is offered by the tools of statistical physics,
which can reveal critical points in the form of phase
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transitions. One example of such a phase transition is
presented in a paper by Holme & Newman (2007),
which focuses on opinion formation in populations.
Specifically the paper considers the case of opinions,
like religious belief, for which the number of possible
choices is only limited by the size of the population.
Disagreeing neighbours manage to convince each other
with probability f or rewire their connections with
probability 1Kf. This ultimately leads to a consensus
state in which the network is decomposed into
disconnected components, each of which consists of
individuals who hold a uniform opinion. For fZ0
opinions never change, so that the final distribution of
opinions matches the initial distribution. For fZ1 no
connections are rewired, so that the number of opinions
in the consensus state cannot exceed the number of
disconnected components that already existed in the
initial network. Applying a finite-size scaling analysis,
Newman & Holme are able to show that between these
extremes a critical parameter value fc is located, at
which a continuous phase transition takes place. At this
transition a critical slowing down is observed, so that
the network needs a particularly long time to reach the
consensus state. In the consensus state the distribution
of followers among the different beliefs approaches a
power law.

The phase transition identified by Holme & Newman
probably holds the key to the findings reported by Gil &
Zanette (2006) and Zanette&Gil (2006). In these papers,
the authors investigate a closely related model for the
competition between two conflicting opinions. In this
case, conflicts are settled by convincing neighbours or
cutting links. It is shown that a critical point exists at
which only very few links survive in the consensus state.
Based on the previous results it can be suspected that this
is a direct consequence of the critical slowing down close
to the phase transition. In this region, the long relaxation
time that is needed to settle to the consensus state might
result in a very small number of surviving links.
7. SUMMARY, SYNTHESIS AND OUTLOOK

In this paper, we have reviewed a selection of recently
proposed models for adaptive networks. These
examples illustrate that adaptive networks arise in a
large number of different areas including ecological and
epidemiological systems; genetic, neuronal and immune
networks; distribution and communication nets and
social models. The functioning of adaptive networks is
currently studied from very different perspectives
including nonlinear dynamics, statistical physics,
game theory and computer science.

Despite the diverse range of applications from which
adaptive networks emerge, we have shown that there
are a number of hallmarks of adaptive behaviour that
recurrently appear.

— Self-organization towards critical behaviour. Adap-
tive networks are capable of self-organizing towards
dynamically critical states, like phase transitions.This
frequentlygoes togetherwith theappearanceofpower-
law distributions. Unlike other forms of self-organized
criticality this mechanism is highly robust (see §3).
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—Spontaneous division of labour. In adaptive networks,
classes of topologically and functionally distinct nodes
can arise from an initially homogeneous population. In
certain models, a ‘de-mixing’ of these classes is
observed, so that nodes that are in a given class
generally remain in the class (see §4).

—Formation of complex topologies. Even very basic
models of adaptive networks that are based on very
simple local rules can give rise to complex global
topologies (see §5).

—Complex system-level dynamics. Since information
can be stored and read from the topology, the
dynamics of adaptive networks involves local as well
as topological degrees of freedom. Therefore, the
dynamics of adaptive networks can be more complex
than that of similar non-adaptive models (see §6).

In the context of biological applications, the hall-
marks described above can be used as a working
guideline: if one of these phenomena is observed in
nature one should consider the possibility that it is
caused by an (possibly so far unobserved or not
recognized) adaptive network. As demonstrated in the
example of Paczuski et al. (2000) the adaptive nature of
a network may not always be obvious, but it can be
revealed by a direct search. The reverse approach can
also be rewarding: in systems which are known to
contain an adaptive network it is promising to search
for the hallmarks described above.

Given the evidence that is summarized in this
review, we believe that adaptive networks could hold
the key for addressing several current questions in
many areas of research, but in particular in biology.
Adaptive self-organization could explain how neural
and genetic networks manage to exhibit dynamics that
in many models appears only in critical states at the
edge of chaos. Spontaneous division of labour could be
important for many social phenomena, like leadership
in simple societies, but also for developmental problems
like cell differentiation in multicellular organisms. The
capability of adaptive networks to form complex
topologies has not been studied in much detail, but it
seems to offer a highly elegant way to build up large-
scale structures from simple building blocks. A biologi-
cal example where this certainly plays the role is for
instance the growth of vascular networks.

Many important processes have so far mainly been
studied only on static networks. However, by doing so,
important aspects of such systems may be overseen or
neglected. For example, take the spread of infectious
diseases. Currently huge efforts are made to determine
the structure of real-world social networks. These are
then used as input into complicated prediction models,
which help to forecast the spread and dynamics of
future epidemics (e.g. influenza). However, the most
involved model or the best survey of the actual social
network is in vain if it is not considered that people may
radically change their behaviour and social contacts
during a major epidemic.

We want to stress that answers to the questions
outlined above would not only enhance our under-
standing of real-world systems comprising adaptive
networks, but could also be exploited in bio-inspired



Box 2. A first rough attempt at an inventory of dynamics of adaptive networks.

Activity disconnects. Rule: frozen nodes gain links, active nodes lose links. Outcome: self-organization towards
percolation transition, active nodes scale as a power law. Examples: Bornholdt & Rohlf (2000) and Rohlf (2007).

Like-and-like. Rule: connections between nodes in similar states are strengthened. Outcome: heterogeneous topologies,
possibly scale-free networks, emergence of topologically distinct classes of nodes. Examples: Bornholdt & Röhl (2003) and
Ito & Kaneko (2002).

Differences attract. Rule: connections between nodes in different states are strengthened. Outcome: homogeneous
topologies, power-law distributed link weights. Example: Zhou & Kurths (2006).
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technical applications that self-assemble or self-
organize many subunits towards desired configurations.
Such strategies are much sought for because many of
these artificial systems will soon be too complicated to
be easily designed by hand. Thus adaptive network
structures may hold the key to provide novel, much-
needed design principles and could well radically
change the way in which future electrical circuits,
production systems, interacting swarms of robots, or
self-healing communication networks are operating
(e.g. Kawamura et al. 1994).

From an applied point of view, it is desirable to
compose an inventory of the types of microscopic
dynamics that have been investigated in adaptive
networks and their impact on system-level properties.
Such an inventory could give researchers a guideline as
to what kind of phenomena can be expected in natural
systems where similar processes are at work. For
instance, we have seen that ‘like-and-like’ processes
which strengthen connections between similar nodes
quite universally seem to give rise to heterogeneous
topologies and global structures. A rough sketch of such
an inventory based on the papers reviewed here is
shown in box 2. In certain places the observations can
be supplemented by mathematical insights. For
instance, in every scale-separated system there has to
be a discontinuous transition in the fast dynamics in
order to maintain an adaptive interplay in the long-
term evolution of the system. Otherwise the fast
dynamics is simply slaved to the slow dynamics.
Nevertheless much more information on the dynamics
of adaptive networks is necessary to fill the inventory.
This information will most likely come from automated
numerical studies of large classes of adaptive networks.

We note that the analysis of an adaptive network is
not necessarily more involved than that of its static
counterpart. While the nodes in static networks
generally have different topological neighbourhoods,
by contrast, the neighbourhood of nodes in adaptive
networks changes over time. Owing to this mixing of
local topologies the network as such becomes more
amendable to mean field descriptions. However caution
is in order, because naive mean field approximations
can fail if a spontaneous division of labour occurs in the
system and is not taken into account.

Apart from the investigation of more examples of
adaptive networks, more fundamental work is certainly
necessary. The works reviewed in this paper can only be
considered as a first step towards a theory of adaptive
networks. However, some important principles are
already beginning to crystallize. The mechanism that
drives the robust self-organization towards criticality is
rather well understood: the dynamics on the network
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makes topological degrees of freedom accessible in every
node. It thus spreads information on topological
properties across the network. The local topological
evolution can then react on this information and thus
drive the topology to a topological phase transition at
which the dynamics on the network is critical. Above
we have conjectured that the observed division of
labour could be driven by a similar mechanism,
characterized by self-organization towards a phase
transition at which the critical slowing down of the
turnover times between emergent properties of nodes
occurs. Moreover, the appearance of topologically
distinct classes of nodes is certainly an important factor
for the formation of complex topologies. Another factor
is probably the dual mechanism described at the end of
§3 by which global organization of the topology is
possible. Finally, the investigations reported in §6
illustrate how topological degrees of freedom, acting as
dynamical variables, can give rise to complex system-
level dynamics. Thus, the four hallmarks described
above seem after all to be connected. It is therefore not
unlikely that all of these peculiar properties of adaptive
networks can be explained by a single theory describing
the transfer of information between state and topology
of the network and the subtle interplay between
different time scales.

Since adaptive networks appear in many different
fields and are already implicitly contained in many
models, a theory of adaptive networks can be expected
to have a significant impact on several areas of active
research. Future fundamental research in adaptive
networks should focus on supplying and eventually
assembling the building blocks for such a theory. While
it has been shown that dynamics on the network can
make global order parameters locally accessible, this
mechanism has only been demonstrated for a few types
of local dynamics. Except for these examples, it is not
clear which set of local rules reveals what kind of global
information. Another open question is how exactly the
observed division of labour arises and how exactly non-
trivial global topologies emerge from the local
interactions. Finally, it is an interesting question,
which topological properties are affected by a given
set of evolution rules, so that they can act on
topological degrees of freedom.

While the study of adaptive networks is presently
only a minor offshoot, the results summarized above
lead us to believe that it has the potential to become a
major new direction in network research. In particular
the prospect of a unifying theory and the widespread
applications highlight adaptive networks as a promis-
ing area for future investigations.
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Boguñá, M., Pastor-Satorras, R. & Vespignani, A. 2003
Absence of epidemic threshold in scale-free networks with
degree correlations. Phys. Rev. Lett. 90, 028701-4. (doi:10.
1103/PhysRevLett.90.028701)
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